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Abstract-This is a numerical and theoretical investigation of natural convection in a two-dimensional 
square enclosure with one side cold and isothermal, and the other side heated with pulsating heat flux. It 
is shown numerically that the buoyancy induced circulation resonates to a certain (single) frequency of the 
pulsating heat input. The resonance is characterized by maximum fluctuations in the total heat transfer 
rate through the vertical midplane of the cavity. The numerical experiments cover the Prandtl number 
range 0.01-7, the heat flux Rayleigh number range IO’-lo’, and the nondimensional frequency range O- 
0.3. It is shown that the critical frequencies determined numerically can be anticipated based on theoretical 
grounds, by matching the period of the pulsating heat input to the period of the rotation (circulation) of 
the enclosed fluid. In the last section, the same theoretical argument is used to predict the critical period 

for natural convection resonance in an enclosed porous medium saturated with fluid. 

1. INTRODUCTION 

THE WORK reported in this paper was motivated by 
a problem encountered in the design of experimental 
apparatuses for the study of natural convection in 
enclosed fluids. In most designs, one wall of the en- 
closure is cooled and another one heated, while the 
remaining walls are well insulated. When the objective 
is to study only the circulation and temperature dis- 
tribution in the fluid, a simple and satisfactory tech- 
nique is to control the temperatures of the differ- 
entially heated walls by means of two constant- 
temperature baths. 

When the experiment is expected to deliver the heat 
transfer rate between two walls, in addition to the 
flow and fluid temperature, it is customary to heat the 
warm wall electrically while cooling the other wall 
with a constant temperature bath. The problem 
addressed in this paper is related to this second class 
of designs, in which the heat input must be controlled 
in order to control (i.e. increase or decrease) the tem- 
perature of the warm wall. A simple way of building 
this control capability into the design of the wall heat- 
ing system is to use a set of electric resistances and 
to power them intermittently, with constant power 
during the ‘on’ mode, and less (or zero) power during 
the ‘OK mode. The control of the temperature of the 
heated wall is achieved by varying the relative size of 
the time intervals associated with the on and off 
modes. On the right-hand side of Fig. 1, for example, 

higher values of the ratio Z/( W-Z) lead to higher 
temperatures on the fluid surface of the heated wall. 

A basic problem that is associated with the on/off 
heat input as a design feature is that the periodicity 
of the heating effect may alter in a substantial way the 
natural circulation and its heat transfer character- 
istics. This is not only a practical issue that needs to 
be addressed in the design of the apparatus, but a 
selfstanding fundamental problem in natural con- 
vection. That problem is to determine under what 
conditions the fluctuation of the heat input has a 
major influence on natural convection and heat trans- 
fer inside the enclosure. This fundamental question 
was already addressed in the realm of forced convec- 
tion, where Zumbrunnen [I] showed that the fluid 
temperature and heat transfer capability may respond 
to the oscillation of the wall heat input. 

There are several additional reasons, practical and 
theoretical, for investigating the natural convection 
resonance phenomenon in a fundamental way. On the 
practical side, in addition to the apparatus design 
problem mentioned already, there is the behavior of 
air spaces (e.g. rooms) and bodies of water (reservoirs, 
lakes) in which the recirculation is driven periodically 
by the daily solar flux. On the theoretical side, there 
is an emerging subfield in natural convection research 
that is concerned with the response of an enclosed 
fluid to time-dependent thermal boundary conditions 
[2-171. For example, Patterson and Imberger [2] 
described the unsteady natural convection in an 
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NOMENCLATURE 

/ nondimensional frequency, RQF flux Rayleigh number for Forchheimer 
equation (11) flow, equation (36) 

fN nondimensional N frequency, RQF.AT temperature difference Rayleigh 
fN - Ra- ‘/‘O number for Forchheimer flow, 

9 gravitational acceleration equation (35) 
H height t time 
k fluid thermal conductivity T temperature 

km thermal conductivity of saturated TC cold side temperature 
porous medium Tll average hot side temperature 

K permeability T rcr reference temperature 
L length u, v  velocity components 
N 

. 
Brunt-Vatsala frequency, u, v  nondimensional velocity components 
(PgAT/H) ‘I2 II’ period 

NUC cold side Nusselt number, equation (13) W nondimensional period 

NUh hot side Nusselt number, equation (15) .Y, y  coordinates 

NhX local Nusselt number, equation (12) x y  nondimensional coordinates 

Nu, vertical midplane Nusselt number, half period 
equation (14) z nondimensional half period. 

P pressure 
P nondimensional pressure 
Pr Prandtl number Greek symbols 

, 
qm total heat transfer rate through the u fluid thermal diffusivity 

vertical midplane %l thermal diffusivity of saturated porous 

4” heat flux medium 
-, 
4c heat flux averaged over the cold wall P coefficient of volumetric thermal 

4K mean heat flux value expansion 

Q” nondimensional heat flux, equation (9) 0 nondimensional temperature 
Ra flux Rayleigh number, equation (8) 0, average nondimensional hot side 

RaAT temperature difference Rayleigh temperature, equation (16) 
number, equation (17) V kinematic viscosity 

Ra, flux Rayleigh number for Darcy flow, p density 
equation (30) 7 nondimensional time 

Ra D.AT temperature difference Rayleigh x quadratic term coefficient, equation 
number for Darcy flow, equation (33) 
(29) ‘4 streamfunction. 

enclosure whose left and right wall temperatures are perature of one side wall is changed suddenly to a new 
suddenly changed by + AT and -AT, respectively. level, while the remaining walls are insulated. 
Nicolette et al. [8] investigated the approach to steady Kazmierczak and Chinoda [ 161 documented 
state in a rectangular enclosure in which the tem- numerically the steady periodic flow in a square 

ae 
u=v=ay=o , 

u=v=o u=v=e=o 
e=o at T=O 

FIG. 1. Two-dimensional enclosure heated with pulsating heat flux from the right side. 
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enclosure with one side cold at constant temperature, 
and the other side at a higher temperature that is 
uniform along the wall (vertically) and varies sinu- 
soidally in time. Their flow corresponds to ‘phase III’ 
of the time-dependent phenomenon considered in the 
present study (Fig. 1, right side), and is restricted 
to one Rayleigh number (f&r = 1.4 x 105) and one 
Prandtl number (Pr = 7). Kazmierczak and Chinoda 
simulated flows for three different frequency settings 
for the fluctuation of the hot wall temperature, and 
showed that the frequency has an effect on the en- 
closure flow. Specifically, they reported a monotonic 
relationship between the period of wall temperature 
oscillation and the amplitude of the fluctuation ex- 
hibited by the mass flowrate of the gyre (fluid wheel) 
that turns inside the enclosure. In other words, they 
did not detect resonance between the wall temperature 
and flow oscillations. 

The focus of the present paper is on the resonance 
between enclosed natural convection and pulsating 
wall heating. For this reason the study is based on a 
wide range of heat input frequencies, flux Rayleigh 
numbers Ra (IO’-109) and Prandtl numbers (0.01-7). 
The work is a combination of empiricism and theory, 
namely numerical simulations accompanied by theor- 
etical order-of-magnitude predictions (scale analysis). 

2. MATHEMATICAL FORMULATION 

The flow model is based on the assumptions that 
the fluid is Newtonian and that the properties are 
constant, with the exception of the density in the body 
force term of the momentum equation. The Ober- 
beck-Boussinesq [ 18, 191 approximation is used to 
relate density changes to temperature changes, and to 
couple in this way the temperature field to the flow 
field. The nondimensional equations for the con- 
servation of mass, momentum and energy are written 
with reference to the left side of Fig. 1, 

DU 
-= 
Dr 

v2u (2) 

DV 
-= 
Dr 

v2v+o (3) 

Dt? 
Dr = (Ra Pr)- “‘V20 

where D/DT = a/&+ U a/H+ V a/a Y, and V2 = 
d2/aX2+a2/dY2. The nondimensional variables are 
defined by 

(5) 

7 = $ (Ra Pr) ‘12, 
T- T, 

e=----- 
q;Ir Hlk 

(6) 

P= H2@+w) 
pa2RaPr ’ 

Pr = y  
a 

The initial and boundary conditions for flow and 
temperature are indicated on the left side of Fig. 1. 
The cross-section of the two-dimensional cavity is 
square, L/H = 1, and the horizontal walls are insu- 
lated. The left side of the enclosure is isothermal and 
cold (T = T,, or 0 = 0). The right side is heated with 
the heat flux q”(t). which is distributed uniformly 
along the surface, and changes with time as shown on 
the right side of Fig. 1. The nondimensional heat flux 
function Q”(r) is defined by 

where q;Ir is the mean value of the heat flux. 
There are three distinct phases in the time depen- 

dent evolution of the flow and temperature in the 
fluid. In phase I, the fluid is warmed up to a steady 
state (7 w T,) in which the circulation is driven by 
uniform flux (qL) from the right, and uniform tem- 
perature (T,) from the left. This first phase is similar 
(but not identical) to the transient natural convection 
processes described in refs. [2, 8-101. 

In phase II the heat flux fluctuates in square wave 
fashion about the mean value qK. The flow and tem- 
perature fields progress from the steady state reached 
at the end of phase I, toward a steady periodic (oscil- 
latory) state marked by r w T,~. The amplitude of the 
heat flux wave is fixed at 20% of the mean value. In 
the present case, the dimensionless period of the heat 
flux wave is twice the time interval associated with 
peak heat flux, W = 22. According to the 7 definition 
(6) these time intervals are defined by 

( W, 2) = (w, z)(a/H2)(Ra Pr)“’ (10) 

where w is the actual period. The nondimensional 
frequency f is defined by 

w = 22 = l/f. (11) 

At times greater than T,,,,  the flow settles in the steady 
oscillatory state, or phase III. 

To study the path followed by the total instan- 
taneous heat input (q’ = q”H) through the enclosure, 
it is helpful to document the behavior of the cold side 
local Nusselt number, 

w 

the heat flux averaged over the cold wall (43, or the 
cold side overall Nusselt number, dy (13) 

and the instantaneous heat transfer rate through the 
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vertical midplane of the enclosure (qk), or the cor- 
responding overall Nusselt number, 

Nu, = y= j’ [(R.F’r)“ios-;] dY. 
0 x l/2 

= 

(14) 

The overall Nusselt number for the hot side, or the 
instantaneous wall averaged temperature Thh, can be 
calculated by writing 

where 

eh = 
I’ 

01x,, dY. (16) 
0 

The Rayleigh number based on the average instan- 
taneous side-to-side temperature difference ( Th - r,) 
is proportional to the heat flux Rayleigh number Ra 
of equation (8), 

Ra,, = sP(Ft, - TM’ 

UV 
= 8,Ra. (17) 

3. NUMERICAL METHOD 

The method chosen for the numerical simulations 
was the finite-differences control-volume method of 
Patankar [20]. It was chosen because of earlier exper- 
ience with this method in problems of buoyancy 
induced flow and heat transfer (e.g. refs. [l6, 21, 
221). The general features of our application of this 
method (algorithm, grid, t&diagonal solver, etc.) are 
described in detail in ref. [22]. The convergence of the 
numerical results is established locally based on the 
criterion 

MAX “+I -@ 
I I # 

< 10-3 (18) 

where 4 is replaced by U, V and 19 at every position 

1.2 

NU 
1 

0.8 

0.6 

(X, Y) in the computational domain, and i and i+ 1 
are two consecutive iterations at the same time T. 
Accuracy tests showed that the solutions that satisfy 
the local criterion (18) exhibit a relative error smaller 
than low6 between two consecutive iterations on the 
overall Nusselt number. 

Additional accuracy tests were performed to select a 
nonuniform grid of 82 x 82 nodes. The relative change 
exhibited by the overall Nusselt number is less than 
2% when the grid changes from 62 x 62 nodes to 
82 x 82 nodes. The chosen grid is finer than the 36 x 45 
grid used by Kazmierczak and Chinoda [ 161. 

The selection of the time step took into account the 
history of the process, that is the position on the time 
scale 7, relative to the three phases identified on the 
right side of Fig. 1. The smallest time step (A7 = 0.03 
for the case of Fig. 2) was selected for the start of 
phase I, in order to capture the steepest gradients that 
occur in the beginning of this phase (see the detail 
inserted in Fig. 2). The time step was subsequently 
increased based on a numerically implemented adap- 
tive time step scheme, which was tested for its accuracy. 
Relative to leaving the initial time step unchanged 
throughout phase I, this strategy leads to a reduction 
in half of the total computational cost for phase I. 

For phases II and III, which are dominated by 
fluctuations caused by the imposed heating, accuracy 
tests showed that the use of 240 iterations per cycle 
makes the overall Nusselt number insensitive to fur- 
ther decreases in the time step. In the simulations 
reported next, the number of iterations per cycle was 
conservatively set at 400. 

The flow and temperature fields of phase I were 
computed until the steady state was reached. A sample 
of results for overall Nusselt number (Nu,, Nu,) and 
average hot wall temperature (0,) is presented in Fig. 
2. The steady state velocity field (U, V), pressure field 
(P) and temperature field (6) were then used as input 
in the calculation of phases II and III. The calculations 
were stopped when the steady oscillatory regime was 
reached, r = T,,. The work was done on the IBM 3090 

2 
‘2;x1o-3 3 

0.12 

0.1 ‘h 

0.08 

0.06 

0.04 

0.02 

0 

FIG. 2. The behavior of the overall Nusselt numbers and the average hot wall temperature during phase I 
(Pr= 7, Ra= 10’). 



Natural convection resonance in an enclosure 2031 

at the Cornell National Supercomputer Facility. One 
run through phases I, II and III required a total CPU 
time that varied from approximately 2500 s for Pr = 7 
and Ra = IO’, to approximately 32000 s for Pr = 0.01 
and Ra = 10’. 

4. RESULTS 

The strategy of selecting the appropriate (Pr, Ra) 
cases for the study of the resonance phenomenon con- 
sisted of fixing the Prandtl number and using pro- 
gressively higher Rayleigh numbers until phase I no 
longer reaches steady state within a reasonable CPU 
time. The highest Rayleigh numbers reached in this 
manner are Ra = IO9 for Pr = 7, Ra = IO* for 
Pr = 0.7, and Ra = IO’ for Pr = 0.01. In cases where 
Pr = 0.01 and Ra > IO’, the steady state solution 
obtained for Ra = IO5 (end of phase I) was used as 
input for calculating phases II and III. This choice 
was a trade off between the time required to simulate 
phase I at high Ra values and the decay time associ- 
ated with phase II. For each (Pr, Ra) pair, the fre- 
quency f was varied relatively smoothly in order to 
identify as accurately as possible the wall heat input 
frequency to which the flow responds in the most 
visible way. 

Figures 3(a)-(c) present an overview of the con- 
vection response to changes in frequency and Prandtl 
number. Each figure corresponds to a single Prandtl 
number, namely, Fig. 3(a) for Pr = 7, Fig. 3(b) for 
Pr = 0.7, and Fig. 3(c) for Pr = 0.01. There are three 
time charts (frames) in each figure, with the imposed 
frequency f increasing from frame to frame 
downward. The time scale r covers only phases II and 
III, so that T = 0 in every frame corresponds to T = TV,+ 

in Fig. I. 
Each frame shows the evolution of four parameters, 

the cold wall Nusselt number Nu, (thin solid line), the 
midplane Nusselt number Nu, (thick solid line), the 
imposed heat flux Q” (dash line), and the height- 
averaged temperature of the hot wall oh (the lowest 
curve). The middle frames of Figs. 3(a)-(c) corres- 
pond to respnance, which is defined as the critical 
frequency f where the amplitude of the Nu, fluc- 
tuation is the greatest. 

The results of Figs. 3(a)-(c) have a few additional 
features in common. In phase III, the fluctuation of 
Nu, and Nu, is nearly sinusoidal even though the 
imposed heating effect follows a square wave. At fre- 
quencies lower than critical (the top frames), the fluc- 
tuations of Nu, and N, exhibit two frequencies, a 
primary one, which is the same as the forcing 
frequency, and a secondary (higher) frequency that is 
comparable with the critical frequency identified in 
the next (middle) frame. The instantaneous average 
temperature of the heated wall has time to reach a 
locally steady value toward the end of each ‘on’ or 
‘OK interval of the imposed heat flux wave Q”. This is 
particularly true at frequencies near or below critical. 

Figure 4 shows the instantaneous distribution of 

heat flux on the cold wall (Nu,,,) and temperature on 
the heated wall (0 at X = I). All the curves are for 
times T that mark the end of one Q” cycle. The fact 
that the curves come together as T increases, is an 
indication that the flow settles in the steady oscillatory 
regime (phase III). The upper frame of Fig. 4 is for 
Pr = 7 and corresponds to the run presented in the 
middle frame of Fig. 3(a). The lower frame of Fig. 4 
corresponds to the low Prandtl number simulation 
that generated the middle frame of Fig. 3(c). Worth 
noting are the relatively small temperature variations 
along the heated wall (between 15%30% of the average 
value e,), and that when Pr = 0.01 Nu,,, is maximum 
at a height Y of approximately 0.8. This second feature 
was also noted in an earlier study of low Pr and high 
Ra convection in a two-dimensional enclosure with 
isothermal side walls at different temperatures [22]. 

Figure 5 shows the evolution of the streamline pat- 
terns in phases II and III, in an enclosure filled with 
Pr = 7 fluid at Ra = IO9 and J= 0.018. This cor- 
responds to the resonance case identified in the middle 
frame of Fig. 3(a). The streamlines plotted in the first 
six frames of Fig. 5 represent J/ = constant curves, 
where the steamfunction Jl(X, Y, T) is defined by 
U = all//aY and V = -@/ax, with $ = 0 on the 
square boundary. Equal increments A1(1 separate two 
adjacent streamlines. 

Note further that in Fig. 5 the time T increases 
from left to right, and downward. Each frame that is 
assembled in the left column corresponds to the end 
of an ‘off’ mode of the pulsating heat input, namely, 
Q” = 0.8 (Fig. I). The frames placed in the right 
column are for those instances T that mark the end of 
an ‘on’ mode, Q” = 1.2. The first four $ frames are 
from phase II, while the fifth and sixth (the third row 
in Fig. 5) illustrate the long-time, periodic and steady 
behavior (phase III). 

This presentation of the evolution of the flow pat- 
tern stresses the difference between off and on heating, 
when seen by the fluid that circulates in the cavity. In 
the off mode, the cavity fluid decelerates along the 
heated wall, and returns partially through the core. 
Note the persistence of two cells (both counter- 
clockwise) in the IJ frames on the left side of Fig. 5. 
In the on mode, the fluid accelerates along the heated 
wall, and it is entrained all the way from the opposite 
(cold wall) boundary layer. The circulation consists 
of a single counterclockwise cell, which is centered 
almost in the geometric center of the enclosure in 
phase III (provided T marks the end of the on mode). 

The bottom row of Fig. 5 shows the patterns of 
isotherms in phase III, at the end of the off and on 
modes. These isotherms correspond to the two frames 
of streamlines shown in the third row of the same 
figure. Only two sets of isotherms are shown because 
their pattern remains practically the same throughout 
phases II and III. The plot is based on a A0 increment 
that remains constant in going from one isotherm to 
the next. The isotherms show that the vertical walls 
are always lined by distinct thermal boundary layers, 
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Nu 
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0.2 h 

0 
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FIG. 3. The behavior of the overall Nusselt numbers and the average hot wall temperature during phases 
II and III, and the effect of increasing the forcing frequency : (a) Pr = 7, Ra = 109, (b) Pr = 0.7. Ra = IO*, 

(c) Pr = 0.01, Ra = 107. 

which are consistent with lhe boundary layers documents phases II and III of the numerical exper- 
revealed by the streamline pattern. iment that also produced the middle frame of Fig. 3(c) 

The evolution of the flow and temperature fields at (namely, Pr = 0.01, Ra = IO’, f= 0.05). The flow 
low Prandtl numbers is illustrated in Fig. 6, which pattern (the shape of the streamlines) is fairly insen- 



Natural convection resonance in an enclosure 2033 

lo-* ’ ’ ’ ’ I ’ 
0 0.2 0.4 0.6 0.8 y 1 

N”locl 
10-l 

8at F 
/ 

eatx=1 
x=1 

1o-2 
0 0.2 0.4 0.6 0.8 y 1 

FIG. 4. The cold-wall local Nusselt number and hot wall 
temperature at the end of each Q” cycle: (top) Pr = 7, 
RU = IO”, /= 0.018, (bottom) Pr = 0.01, Ra = IO’, 

/ = 0.05. 

sitive to the mode of the pulsating heat input, 
however, the total flowrate (or maximum +) is 6.07% 
greater at the end of the on mode than at the end 
of the off mode. The shape of the isotherms is also 
insensitive to the mode of the pulsating heat input, 
provided 7 marks the end of that mode. The thermal 
boundary layers are distinct (Ra is just high enough), 
as the spacing between isotherms near the walls is 
smaller than the spacing in the core region. This fea- 
ture suggests that convection begins to overtake con- 
duction as the dominant heat transfer mechanism. 

The numerical experiments conducted in this part 
of the study are summarized in Fig. 7. This figure 
shows the frequency range covered in the search of 
resonance in the natural circulation, and how the f 
range depends on the Prandtl number. The value 
N%,,X plotted on the ordinate in Fig. 7 is the 
maximum value of the Nu,(r) wave in the steady 
oscillatory regime (phase III). Similar maxima are 
exhibited by the cold-wall Nusselt number curve 
(Nu,(r), Fig. 3) : these are not shown in Fig. 7, because 
for Pr > 0.7 the peak value Nu,.,,, is very close to 1, 
and the curve Nu,.,,, vs f would be difficult to see. It 
is worth mentioning that the existence of resonance 
is qualitatively similar to the resonance detected by 
Iwatsu et al. [23] in a cavity with thermally stratified 
fluid, and with an oscillating lid. 

Figure 7 shows the resonance effect discussed 
already in relation to Fig. 3. The curve Nu,,,,, vs f 
has a relatively sharp peak at a distinct frequency. The 
same effect (i.e. peak) is exhibited at the same critical 
frequency of the Nu,.,,, vs f curve, which is not shown. 

The critical frequency determined in this manner 
appears to be a function of Prandtl number and Ray- 
leigh number. The purpose of the analysis presented 
in the next section is to derive this function, so that the 
case-by-case information of Fig. 7 may be extended to 
regions of the Pr and Ra domains that were not tested 
numerically. 

5. SCALE ANALYSIS 

One way to explain the fluctuation exhibited by 
overall quantities such as Nu,,,(r) and Nu,(r) when 
Q”(7) is imposed, is to consider what happens when 
the natural circulation (fluid ‘wheel’ of diameter -H) 
completes one turn. The pulsating heat input through 
the right side of the enclosure paints a sequence of hot 
and cold spots on the fluid wheel. When these spots 
cross the vertical midplane and, later, come in contact 
with the opposite side wall, they induce Nu, and Nu, 
fluctuations that have the same period w as the heat 
input. 

It is reasonable to suspect that the periodicity that 
the fluid wheel inherits from the heated wall will be 
accentuated the most when the forcing period w hap- 
pens to coincide with the period of the wheel rotation, 

4H 
IV---. 

V 

On the right side, v is the scale of the peripheral vel- 
ocity of the wheel and the product 4H represents the 
wheel perimeter in a square enclosure. The v scale is 
the same as the scale of the vertical velocity along one 
of the side walls. 

In enclosures containing fluids with Prandtl num- 
bers of order 1 or greater, the vertical velocity scale 
in the boundary layer is [24] 

v  - ;R& (Pr 2 1) (20) 

or, according to equations (15) and (17), 

(Pr 2 1). (21) 

In boundary layer natural convection due to uniform 
flux heating from the side, the overall Nusselt number 
is of the same order as the flux Rayleigh number raised 
to the one fifth power [24], 

Nub - Ra”’ (Pr 3 1) (22) 

so that the v scale becomes (U/H) Ra215. This scale and 
thefdefinition provided by equations (10,ll) leads to 
the following estimate for the critical nondimensional 
frequency represented by the equality of times (19), 

f- :Ra-“‘“Pr-“2 (Pr 3 1). (23) 

The dimensional period that corresponds to this f 
estimate is 
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End of “off” mode. Q”=O.8 

T  = 83.4 

T  = 305.8. 361.4. 417. etc. T  = 305.8. 361.4. 417. etc. 

End of “on” mode. Q”=1.2 

T  = 55.6 

T  = 333.6, 389.2, 444.8 

T  = 305.X. 36l.L 417. NC. r = 333.6. 389.2. -1-l-1.8 

FIG. 5. Streamlines (the top three rows) and isotherms (the bottom row) during phases II and III in a 
Pr = 7 fluid at Ra = IO9 andf= 0.018. 
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End of “off” mode. Q”=O.X End of “on” mode. Q”= I .2 

2035 

T= 180 

T = 180. 200. e~c. 

FIG. 6. Streamlines (the top two rows) and isotherms (the bottom row) during phase III in a Pr = 0.01 
fluid at Ra = 10’ and f= 0.05. 

,,, - 4; Ra- 215 (Pr 2 1). (237 

It is worth pointing out that the critical frequency 
derived in equation (23) is not exactly the same as the 
Brunt-VaisllI frequency [23, 251, N - (BgAT/H) I/*. 
If in this N scale we substitute NuL - qbH/(kAT) and, 
for Pr 3 1, Nu,, - Ra”’ (see equation (22)) then the 
N scale becomes N - Ra2” (LW)“*/H*. In view of 
equation (IO), the nondimensional counterpart of the 
N frequency is of order j;Y - Ram’/“, which repro- 

duces only one feature (the Ra dependence) of the 
critical frequency j identified in equation (23). 

This analysis can be repeated for low Prandtl num- 
bers, by assuming that the vertical thermal boundary 
layers are distinct, which means that [24] 

(RaPr)“’ > 1. (24) 

This condition comes from the statement that the 
thermal boundary layer thickness (- H(Ra Pr)- ‘/‘) is 
smaller than the longitudinal length scale (H). Note 
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Ra = 10’ 

0.01 0.1 f  ’ 

FIG. 7. The effect of the heat input frequency on the 
maximum of the Nu, vs 5 wave in the steady oscillatory 

regime. 

that when Ra = 10’ and Pr = 0.01, the left side of 
equatioh (24) is of order 1, which is why the thermal 
boundary layers are barely visible (distinct) in the 
bottom row of Fig. 6. The Pr < 1 analysis continues 
with recognizing the scales 

v  - ;(PrRa,,)“* (Pr < 1) (25) 

Nu,, - (Ra Pr)“’ (Pr < 1) (26) 

and the final results for the nondimensional critical 
frequency and the corresponding dimensional period 
are 

f- i(RaPr)-“lo (Pr < 1) (27) 

w-4$(RaPr)-*j5 (Pr < 1). (27’) 

Table 1 shows a comparison between the critical 
frequencies determined numerically in Fig. 7, and the 
theoreticalfestimates based on equation (23) or equa- 
tion (27). The order of magnitude theory performs 

very well over the entire Pr range considered, provided 
Ra is high enough so that the vertical boundary layers 
are distinct. The agreement between the numerical 
and theoretical values is within 50%. 

The theory underestimates the numerical critical 
frequency when the Prandtl number is large (Pr = 7). 
At Pr = 0.7 and Pr = 0.01 the theory overestimates 
the numerical results. When Ra < 10’ and Pr = 0.01, 
convection is not the dominant heat transfer mech- 
anism (the boundary layers are not distinct) and the 
NKll.,, vs f curve does not exhibit a sharp peak. The 
gradual disappearance of the peak as Ra decreases is 
also evident in the Pr = 7 and Pr = 0.7 frames of 
Fig. 7. 

6. ENCLOSURE FILLED WITH A FLUID 

SATURATED POROUS MEDIUM 

The numerical test presented in Table 1 is also a 
good opportunity to extend the theory of the pre- 
ceding section to the realm of natural convection in 
enclosures filled with fluid saturated porous media. 
The analogy between natural convection in a pure 
fluid and natural convection in a fluid saturated 
porous medium is well known [26, 271. The only 
difference is that the square cross-section in Fig. 1 
would be filled with a homogeneous porous medium 
saturated with fluid. The properties of the saturated 
medium are the thermal diffusivity LX,,,, thermal con- 
ductivity k,, Darcy permeability K, and the inertia 
(Forchheimer) coefficient x. To the definition of x we 
shall return in equation (33). 

The critical period of the pulsating heat flux from 
the side can be estimated based on equation (19), in 
which v is the scale of the volume averaged vertical 
velocity. In Darcy flow that scale is [24, 281 

v  - 2 RcI,,~, (28) 

where Ra,,, is the Darcy modified Rayleigh num- 
ber based on the average side-to-side temperature 
difference 

%AT = gPKH(T,, - TJ 
vet, . (29) 

This Rayleigh number is also equal to RaJNu,,, where 
Ra, is the Darcy modified Rayleigh number based on 
heat flux, 

(30) 

Table I. Comparison between the numerical and theoretical estimates for the critical frequency, / 

Pr = 7 Pr = 0.7 Pr = 0.01 

Ra = 10’ IO* lo9 Ra= lo6 10’ lo8 Ra= lo6 10’ 
Numerical, Fig. 7 0.030 0.025 0.018 0.05 0.04 0.025 0.08 0.047 
Theoretical, equations (23) and (27) 0.019 0.015 0.012 0.07 0.05 0.04 0.10 0.08 
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and Nu,, is the overall Nusselt number q&H/k(T,,- T,). 

The Nu,, scale in the distinct boundary layer regime is 
124, 291 

Nu,, - Rags. (31) 

Combining equations (28)-(31) we obtain u - 
(cr,/H) Raa’ and the critical period 

NJ - 4 z Ra, 3/5 (Darcy). (32) 

The analysis can be repeated for the inertial, or 
Forchheimer regime in which the quadratic drag term, 
(x/v)u2, is greater than the Darcy term, v, on the left 
side of the momentum equation for one of the vertical 
boundary layers [27, 30, 3 11, 

The units of x are [ml. In place of equations (28)-(3 1) 
we write, in order, 

Ra 
g/lKH’(F,, - T,) Ra, 

F.AT = 
xutt, = Nu, 

(35) 

Ra 
F 

= dKH’q;l, 
x4& 

Nu,, - RaLi5 (37) 

where RaF.AT and RaF are the Forchheimer modified 
Rayleigh numbers based on temperature difference 
and, respectively, average heat flux. The critical period 
of the pulsating heat input is 

(38) 

The similarities between the porous medium results 
(32, 38) and the pure fluid results (23’, 27’) are worth 
noting. 

7. CONCLUDING REMARKS 

The main conclusion reached in this study is that 
at sufficiently high Rayleigh numbers where con- 
vection is the dominant heat transfer mechanism, the 
buoyancy driven flow has the tendency to resonate to 
the periodic heating that is being supplied from the 
side. The resonance is characterized by maximum 
fluctuations in Nu, and Nu,, which physically trans- 
late into maximum fluctuations in the local velocity 
and temperature of the enclosed fluid. It was dem- 
onstrated based on numerical experiments that the 
resonance phenomenon exists in the Prandtl number 
range 0.01-7, and that it becomes more evident as the 
Rayleigh number increases. 

The numerical results and the order of magnitude 
analysis showed that the critical period w associated 
with the resonance phenomenon decreases as the flux 

Rayleigh number increases, equations (23’) and (27’). 
The Prandtl number has an effect only if its order of 
magnitude is lower than 1: the critical period increases 
as Pr-2’S while Pr decreases, equation (27’). The scale 
analysis was extended to enclosed porous media satu- 
rated with fluid, to predict the critical period that 
would induce maximum fluctuations in the buoyancy 
driven flow. 
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